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PERIODS OF CUSP FORMS AND ELLIPTIC CURVES 
OVER IMAGINARY QUADRATIC FIELDS 

J. E. CREMONA AND E. WHITLEY 

ABSTRACT. In this paper we explore the arithmetic correspondence between, on 
the one hand, (isogeny classes of) elliptic curves E defined over an imaginary 
quadratic field K of class number one, and on the other hand, rational new- 
forms F of weight two for the congruence subgroups F0(n), where n is an 
ideal in the ring of integers R of K. This continues work of the first author 
and forms part of the Ph.D. thesis of the second author. In each case we com- 
pute numerically the value of the L-series L(F, s) at s = 1 and compare with 
the value of L(E, 1) which is predicted by the Birch-Swinnerton-Dyer con- 
jecture, finding agreement to several decimal places. In particular, we find that 
L(F, 1) = 0 whenever E(K) has a point of infinite order. Several examples 
are given in detail from the extensive tables computed by the authors. 

1. INTRODUCTION 

In [5, 6, 7], a systematic study was started of a Weil-Taniyama-type corre- 
spondence between elliptic curves E defined over an imaginary quadratic field 
K and certain automorphic forms F over K. This followed on from work 
of Mennicke and others (see [1 5], for example). The forms F, which will be 
described in ?2 below, were computed by an extension to K of the modular 
symbol method, which is well known in the rational case and described fully 
in [8]. So far, the only fields treated fully are the nine fields K of class num- 
ber one, namely the Euclidean fields Q(/-in) for m - 1, 2, 3, 7, 1 1 (see 
[6]), and the non-Euclidean fields of class number one (m = 19, 43, 67, 163) 
(see [23]). Work is in progress to extend the methods to fields of higher class 
number. 

In essence, the results of [5, 6, 23] were as follows. There was observed to 
be a correspondence between 

(1) isogeny classes of elliptic curves E defined over K of conductor n, 
where n is a nonzero ideal of the ring of integers R of K; 

(2) cuspidal automorphic forms of weight 2 for the congruence subgroup 
Fo(n) of GL(2, R), which are newforms with rational integer Hecke 
eigenvalues. 

For each such corresponding pair (E, F), the conductor n of the curve E 
equals the level n of F. Also, the Hasse-Weil L-function L(E, s) of E and 
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the L-function L(F, s) attached to F (essentially the Mellin transform of F, 
see ?2), which both have Euler product expansions of the same type, also agree 
in at least the first 50 Euler factors. Explicitly, for small primes p of K not 
dividing n, the trace of Frobenius ap of E at p and the eigenvalue of the 
Hecke operator T. also agree. 

Remark. In fact, certain curves and forms must be excluded from this corre- 
spondence. On the one hand, if E has complex multiplication by an order in 
K itself, then L(E, s) is related to an Eisenstein series over K rather than a 
cusp form, as observed in [21 and 11]. On the other hand, the first author in 
[9] found examples of forms F of type (2) which are (possibly up to quadratic 
twist) lifted from cusp forms over Q and which do not correspond to elliptic 
curves over K in this way. Instead, they correspond to certain two-dimensional 
modular abelian varieties over Q which are simple over K. Examples of this 
phenomenon are given in [9]. For the five Euclidean fields they all lie beyond the 
range of the tables in [6], but one example over Q(V -43) will be seen below. 

In this paper we explore the arithmetic correspondence between these pairs E 
and F in greater depth, particularly in relation to the Birch-Swinnerton-Dyer 
conjecture. It should be stressed that there is no known method of constructing 
an elliptic curve from the forms F we are considering, in marked contrast with 
the situation over Q, where Shimura's construction of modular elliptic curves 
Ef attached to newforms for Fo(N) is well known. (The exception to this is 
when F is the lift, possibly twisted by a quadratic character, of a cusp form 
of weight 2 for Fo(N) over Q; then E is a twist of the modular elliptic curve 
Ef, viewed as a curve defined over K.) The cusp forms F are essentially 
real analytic harmonic 1-forms on a 3-dimensional hyperbolic manifold (with 
no complex structure), and have a single real period Q(F). We describe how 
to compute Q(F) numerically in ?2.8. Also, by an analogue of the Manin- 
Drinfeld Theorem, the quantity L(F, 1) is a rational multiple of Q(F), and 
the ratio L(F, 1)/Q(F) may be computed exactly using modular symbols over 
K. In particular, we may determine easily whether L(F, 1) is zero. 

On the other hand, the value of L(E, 1) is predicted by the Birch- 
Swinnerton-Dyer conjectures as follows: 

(1) We have the equivalence 

(1.1) L(E, 1) = 0 4=? rank(E(K)) > 0. 

(2) Moreover, if E(K) is finite, then 

(1.2) L(E, 1) = 2 Q?(E)JcPffl 
V DL1 LE(K) 12 

Here, D is the discriminant of K, m is the Tate-Shafarevich group of E 
over K, cp is the local index [E(Kp) : EO(Kp)], and Q(E) is the "complex 
period" of E: 

Q(E) = A c6, 
E(C) 

where w is the Neron differential on E. (Explicitly, if the period lattice A 
of E has Z-basis Al, A2, then Q(E) = IIm(A{i2)1, the area of a fundamental 
parallelogram for A.) We will call Q(E) the area of E. To simplify formulae, 
set Q*(E) = 2Q(E)/ 1DI. 
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As far as (1.1) is concerned, we check in each case where L(F, 1) = 0 that 
E(K) is infinite, by finding a point of infinite order on E(K). We have not 
proved that E(K) has rank 0 in the cases where L(F, 1) 54 0, however. 

We verify (1.2) in two ways: first, we compute Q* (E) and Q(F) numerically 
and check that they are equal to within the accuracy of the computation, in all 
cases. Secondly, when L(F, 1) 54 0, we compare the nonzero rational num- 
bers L(F, I)/Q?(F) and Hl c,/E(K)i2. Specifically, we compute the nonzero 
rational number 

S L(F, 1) / cp 
Q(F) IE(K) 12 

which, if L(F, s) = L(E, s) and the conjectural equation (1.2) holds for E, 
should equal the order of the Tate-Shafarevich group JR. We find that S = 1 
in most cases, with S = 4, 9, or 16 occasionally: see ?4 for examples. These 
values are consistent with the theorem of Cassels [3], that iLi is a perfect 
square, if finite. We have not computed IJR, or even the 2-primary part via 
2-descent, for any of the curves yet. Thus, in all cases we find that L(F, 1) is 
equal to the value of L(E, 1) predicted by the Birch-Swinnerton-Dyer conjec- 
ture, provided that Ell has order S. 

We should remark that L(E, s), and hence the left-hand side of (1.2), is 
invariant under isogeny; so is the right-hand side of (1.2) by a theorem of 
Cassels [3]. However, the individual factors on the right of (1.2) are not isogeny 
invariant. In order to take this into account, we compute for each curve E 
the curves isogenous to E. For each curve in the isogeny class we compute 
the ratio H c./IE(K)I2 and the area Q(E). In each class we found one or 
more curves for which (a) Q*(E) = Q(F); and, when L(F, 1) 0 0, also 
(b) Hcp/IE(K)I2 = L(F, 1)/Q(F), possibly up to a square factor S. 

This somewhat ad hoc approach seemed unavoidable, as we could see no 
way of determining a priori which of the curves in the isogeny class was 'most 
closely' related to the form F. This uncertainty does not arise in studying 
modular curves over Q (as in [8]), of course, since there one can single out the 
'strong Weil curve' in the isogeny class as the one whose period lattice consists 
precisely of the Xo(N)-periods of the associated cusp form f for Fo(N). 

A recent result of Stevens [191 shows that every isogeny class of curves over 
Q has a unique 'minimal' curve with period lattice minimal amongst all the 
curves in the class. The evidence suggests, and Stevens conjectures, that this 
minimal curve can be characterized as the curve attached to the F, (N)-period 
lattice of the associated cusp form, rather than the Fo(N) lattice. These results 
do not appear to generalize to number fields other than Q: some of the isogeny 
classes of curves which we compute here have no unique minimal element. 

It is hoped to consider the 'positive rank' case (where L(F, 1) 0) in more 
detail in the future. First of all, this would involve computing L'(F, 1), and 
higher derivatives if necessary. A method similar to the one used in [2 and 8] 
might be possible here. Secondly, one would need to compute a basis for the 
points of infinite order on the curves, and their heights. This should be more 
straightforward, using our existing implementation of Silverman's algorithm 
[18] to compute the heights. 

We are also extending the whole investigation to fields with class number 
greater than one. 
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The work described here forms part of the University of Exeter Ph.D. thesis 
of the second author, under the supervision of the first author. 

2. PERIODS OF CUSP FORMS 

2.1. Cusp forms of weight two for Fo(n). Automorphic forms for general 
global fields are discussed in [22 and 16]; for the case of an imaginary quadratic 
field, see [10, 5, or 13]. Here we are only concerned with cusp forms of weight 
two for Fo(n), where n is a nonzero ideal in the ring of integers R of an imag- 
inary quadratic field K of class number one and discriminant D. The theory 
of these forms, Hecke operators, oldforms and newforms is entirely analogous 
to the classical 'Atkin-Lehner' theory over Q. For a complete discussion of the 
general case, see [16]; here we quote a summary of the facts we will need. 

Let R be the hyperbolic three-space 

X3 = I(Z, t) I Z C: , t E R, t > 0 

with the usual hyperbolic structure and action of GL(2, C). We set 

l (d z d t d-) 

a basis for the left-invariant differential forms on X . 
A cusp form of weight two for Fo (n) is a vector-valued function F: -?: 3 

such that 
(1) F * fB is a Fo(n)-invariant harmonic differential one-form on X3 
(2) fR\C(Fja)(z, t) dz = 0 for all a E SL(2, R). 

Such functions have Fourier expansions of the following form: 

(2.1) F = (Fo, F, F2) = E c(a)t2K ( X )W (a) 
0:/aER 

V- 
- 

F 

where 
W(z)= exp(27ri(z + z)) 

for z E C, and 

K(t) = (-_Ki(t), Ko(t), jK (t)) 

for t E R, t > 0. Here, Ko and K1 are K-Bessel functions. 
The space of such functions will be denoted S(n), and is finite-dimensional 

for each n. As in the classical theory, there is a commutative algebra of Hecke 
operators acting on S(n). For primes 7r of R not dividing the level n we 
have an operator T, which takes the form with coefficients c(a) to one with 
coefficients c'(a), where 

c'(a) = N(z)c(azn) + c(a/ic), 

and c(a)=0 if a4R. 
For each prime 7r dividing n there is also an 'Atkin-Lehner' operator W, 

which is an involution. The product of the W, involutions is the 'Fricke invo- 
lution' W, , induced by the action of the mnatrix (0 

- 
) where v is a generator 

of the ideal n. 
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2.2. Newforms. A newform in S(n) is an eigenform for all the Hecke oper- 
ators T, for 2z not dividing n, which is not induced from a form in S(m) 
for any level m properly dividing n. Newforms can be normalized so that 
c(l) = 1, and then the Fourier coefficients c(a) are all determined from the 
Hecke eigenvalues as follows: for all primes 7T not dividing n, T?F =c(7)F; 
for primes 2t dividing n, we have W?F = 6EF with 6, = ?1, and 

{ 0 if 7r2 I n, 
C 

-r _E if 7 n but 72{ n. 

For prime powers, we have the recursive relation, for r > 1 

C(7,r+l) 

C 
C(7) C(7(r) -N(7)c(7r-l) 7r{n 
C c(7) C(7rr), 7 [ n, 

and for composite a the function c(a) is multiplicative. For the present appli- 
cation, we will be interested in 'rational' newforms whose Fourier coefficients 
are rational integers. 

2.3. Cusp forms and homology. In [5 and 6], a method based on modular 
symbols was presented for computing the space S(n) for ideals n of small 
norm, in the case where K is Euclidean. This was extended to non-Euclidean 
fields of class number one by the second author in her thesis [23]. The method 
relies on an isomorphism (duality) between S(n) and the homology space 
V (n) = H1 (Fo(n)\ * , C); the isomorphism respects the Hecke action on both 
spaces, so that S(n) and V(n) are isomorphic as modules for the Hecke alge- 
bra. In practice, one finds newforms in S(n) by computing the action of enough 
Hecke operators on V(n), and finding one-dimensional eigenspaces with ratio- 
nal eigenvalues. 

2.4. Plusforms. In addition to the Hecke operators on S(n) described above, 
there is also an involution J induced by the action on 3 of the matrix ( 0?), 
where E generates the unit group R* of R. [In the two fields where E # -1 it 
is perhaps not obvious that J is an involution; but j is induced by the action 
of (,2 ?), which is equal modulo scalar matrices to (' ?2) E 17(n) .] 

The effect of J on Fourier coefficients is c(a) -* c(ca); this involution 
commutes with the Hecke operators, and splits S(n) into two eigenspaces, 

S(n) = S+(n) f S-(n). 

Newforms in S+(n) were called 'plusforms' in [5], and their Fourier coef- 
ficients satisfy the additional condition c(ca) = c(a) for all a E R. It is 
plusforms which appear to correspond directly to elliptic curves, and we will 
restrict to plusforms with rational Fourier coefficients from now on. (No infor- 
mation is lost in making this restriction, since 'minusforms' in S-(n) may be 
twisted into plusforms at a possibly larger level, as explained in [5 and 6]; see 
also p2.8 below, where we also use quadratic twists.) An alternative viewpoint 
is that the forms in S+(n) are invariant under the larger group 

F+ (n) {a 
b 

c:GL(2, R)I cc n} 

Note that, for a plusform F, the Fourier coefficient c(a) depends only on 
the ideal (a) generated by a, and so we may write c(a), where a is an ideal 
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of R. Then we may attach to F the formal Dirichlet series 

(2.2) L(F, s) = E c(m)N(m)-s, 

where m runs over the nonzero ideals of R, and N(m) = IR/ml denotes the 
ideal norm. The multiplicative property of the Fourier coefficients c(a) imme- 
diately implies that L(F, s) has an Euler product expansion: 

L(F, s) = (l - c(p)N(p)-s + X(p)N(p) 1-2s)-1 

p 

where 

0if p n, 
1 if Pttn. 

As in the classical case, we have the estimate Jc(p)l < 2N(p)1/2, from which 
it follows that the series L(F, s) converges for Re(s) > 3/2; in the next sec- 
tion we show, moreover, that the Mellin transform of F provides an analytic 
continuation of L(F, s) which satisfies a functional equation. 

2.5. Mellin transforms of cusp forms. Let F E S(n). We form the Mellin 
transform of F by multiplying by t2s-2 and integrating along the imaginary 
axis to obtain a function of the complex variable s: 

(2.3) A(F, s) = aK j t2s-2F /3. 

Here the normalizing constant aK depends only on the field K, and not on the 
the form F or its level: 

(47f)2 aK =wDJ 

where w = JR*J. The rapid decay of F(O, t) as t -> oo ensures that A(F, s) 
is an entire function of s. In particular, we have the special value 

(2.4) A(F, 1)=aKj F.13 

We will usually only consider A(F, s) for F E S+(n), since it is easy to see 
that A(F, s) = 0 identically for F E S- (n) . 

Proposition 2.1. Let F be a newform in S+(n). Then 

(1) For Re(s) > 3/2 we have 

(2.5) A(F, s) = (27 )2-2s IDIsl1 F(s)2L(F, s). 

(2) A(F, s) satisfies the functional equation 

(2.6) A(F, s) = ?N(n)l-sA(F, 2 - s). 

Proof. (1) If Re(s) > 3/2, then we may substitute the Fourier series (2.1) into 
(2.3) and integrate term by term. Notice that since we are integrating along a 
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vertical path with the z-coordinate constant, we may ignore the dz and dzf 
components of the differential F /A. We obtain 

A(F, s) = aK t2s-2Fl (O, t) - 
JK t 

=aK/f t2s2 , c(a)t2 Ko (4 I )1 t 
Jo &aER D 

aKE c(a) j? t2s-K (47rla) dt. 

Now fj? tkKo(t)dt = 2k-1F(k2 s)2, So after a change of variable we have 

A(F, s) = aK S c(a) (47)<-2s IDIS a -2S22s-2r(s)2 
a 

= W-1 (27t)2-2s IDIs-1]F(S)2 E c(a)N(a)-s 
a 

= (27r)2-2s IDIs-lF(S)2L(F, s). 

(2) We use the fact that newforms in S(n) are eigenforms for the Fricke 
involution W,. Suppose that WnF = EF with e = ? 1. Now 

(WnF)(0, t) = 
( ', II]t) ( I 1 ) 

hence, 

(2.7) F1 (? I) = -EFi(O, t). 

Multiply by t2s-ldt and integrate from 0 to oc; the right-hand side gives 
-EA(F, s), while the left-hand side, after a change of variable from t to 
l/(lvlt), becomes N(n)l-sA(F, 2 - s). This gives the result. El 

In view of (2.5), we may abuse notation to write L(F, 1) = A(F, 1), al- 
though of course the series for L(F, s) does not converge at s = 1 . 

2.6. Numerical computation of A(F, 1). In order to compute A(F, 1) nu- 
merically, we may use the well-known trick of splitting the range of integration 
at the fixed point of the Wn involution, namely (z, t) = (0, 1/1vJ). We 
obtain the following formula. 

Proposition 2.2. Let F be a newform in S+(n) with Fourier coefficients c(a), 
and suppose that W F = F . If e = +1, then A(F, 1)= 0; if e= -1, then 

(2.8) A(F, 1) VI 5 c(a)Kl ( 47(a) 
Dj(a) Ia VIv DI/ 

where the sum is over all nonzero a E R modulo units. 
Proof. In (2.3) we split the range of integration at t = 1/ v , and change 
variable from t to 1/(Iv t) in the integral from 0 to 1/ Vvi, to obtain 

A(F, 1) = aK(l - E ) /] F(O, t)7t 
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Assume e = -1; otherwise, A(F, 1) = 0. Replacing F1 by its Fourier expan- 
sion, we obtain 

A(F, 1) = 2aKX Ec(a) t'Ko V( )5 t- 

Now we use the standard integral 

IxKo(x)dx = -xKI (x) 

and integrate term by term to obtain 

0( 47 |alt) d t A(F, l) =2aKZ1:C(a)f t2K0 (41IaDt' dt 

= 2w-I E 'j J4a I uKo(u) du 
a /'~I-D1 

= 2w' z c(a) 47rJa1 K1 471al 
a DalI2 V VIzvDi 

87t c(a) K 47rla) 

Since KI(t) tends to zero very rapidly as t -+ o0, this series converges 
quickly. E 

2.7 Modular symbols. Let F be a subgroup of finite index in SL(2, R), 
such as Fo(n) . Let A and B be points in 3 = 3 U K U {oo} which are 
equivalent under the action of F, so that B = y(A) for some y E F. Any 
smooth path from A to B in 3* projects to a closed path in the quotient 
space Xr = F\3* , and hence determines a homology class in H1 (Xr, Z) which 
depends only on A and B and not on the path chosen, because X* is simply 
connected. (In fact the class depends only on y: see (5) in the lemma below.) 
We denote this homology class by the 'modular symbol' {A, B}r, or simply 
{A, B} if the group F is clear from the context. The symbol {A, B}r gives a 
functional S(F) -* C via F ~- aK f F . /, since by harmonicity the integral 
is independent of the path from A to B. We may thus extend the definition 
of the symbol {A, B} to points A, B E ? * not necessarily F-equivalent by 

B 
identifying {A, B} with the functional F -+ aK fA F * /3; now, in general, we 
have {A, B} E HI (Xr, C). A generalization of the Manin-Drinfeld Theorem 
(see [13]) says that when A, B are K-rational cusps (i.e., A, B E Ku 00) and 
F is a congruence subgroup, then {A, B} c HI (X7, Q), the homology with 
rational coefficients. In particular, {0, oo} E H1 (Xr, Q). The following simple 
facts are now immediate. 

Lemma. We have 
(1) {A,A}=0; 
(2) {A, B} + {B, A} = 0; 
(3) {A, B} + {B, C} + {C, A} = 0; 
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(4) {yA, yB}r {A, B}r for all y E F; 
(5) {A, yA}r = {B, yB}r for all y E F; 
(6) {A, yA}r c HI (Xr, Z) for all y E F. 

It follows that the map y F-* {A, yA}r is a surjective group homomorphism 
F - ) Hi (Xr, Z), which is independent of A c "* . 

2.8. The periods of a cusp form. Let F be a newform in S(n), and write 
Xo(n) for Xrp(,) in the case F = Fo(n). Then F induces a map 

IF: Hl(XO(n), C) -+ C 

via 
B 

{A, B} H-*aKj F.I 

which is surjective (see [13]) and hence has a kernel of codimension 1. The 
restriction of IF to HI (Xo (n), 2) has an image which is a nontrivial, discrete 
subgroup of R, hence has the form Q(F)Z, for some unique positive real 
number Q(F). This Q(F) is the real period of F. 

We now derive a formula for the numerical computation of Q(F). We will 
in fact give two methods: a direct method, and an indirect (but usually more 
accurate) method, involving A(F, 1), when this is nonzero, or A(F ? X, 1) 
for a suitable quadratic character X, when A(F, 1) = 0. 

Direct method. To each rational newform F E S2(n) there is an associated 
one-dimensional eigenspace VEF of VQ(n) = H1(Xo(n), Q), given explicitly in 
terms of modular symbols. Hence we may determine y c Fo(n) such that the 
symbol {A, y(A) } generates VF n HI (Xo(n), 2) . In practice, the generator may 
be given as a linear combination of such elementary symbols, but for simplicity 
we ignore this. Then Q?(F) = IF({A, y(A)}). 

Proposition 2.3. Let F be a newform in S+(n), and let y a( b) C Fo(n) be 
such that ??(F) = IF({A, y(A)}); then Q(F) is given by 
(2.9) 

= 
7c Zc(a)K1 ( 471a1 ( -ad( ( aa 

k I v c IV D-1 ( 
j 

lvcl 
I 

\jc\cDj- kv c vD2 

where the sum is over nonzero a E R modulo units, and @(Z) = ZEER* lg(Z). 

Proof. Since {A, y(A)} = {A, oo} - { y(A), oo}, we first consider paths of the 
form {A, oo} for A = (zo, to) E X3. Set IF(A) = IF({A, oo}). Then 

IF(A) -aK JF .3 = aK J F1(zO t)-t 
zz (47r alt (& \ 

=aK c Zc(a)tKo ( d t( 

=aKZc(a) V/ (azo)J tKo ( Dj ) dt. 
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Using f tKo(t)dt = -tKI (t) again, we obtain 

IF(A) = aK D c(a) (azo) t0K, (42Iato 
421 jajl vDVIDI/ 

_ 41toE c(ca) (azo NK (41aIto 

Since F is a plusform, we may simpiify the sum to 

(2.10) IF(A) =47t0 ZcE o (aa azo (K Ira)to 
v ID-(a IH vD- V IJDI 

the sum being taken over all nonzero a E R modulo units. 
As in (2.8), this sum converges fairly quickly, and to aid convergence, we 

seek to choose A so that to is as large as possible. Write y a b( ) . Then it 
is best to take 

A = ) y (A)- = '1c) 

and the value of to in both cases is 1 /vcl; in practice, we will try to choose y 
so that cI is as small as possible. Substituting into (2.10), we find, finally, that 

Q(F) = IF({A, y(A)}) = IF({A, oo}) - IF ({y(A), oc}) 

421 E c(a)K ( 47r1a1 ' ( ( -cad aa (c aa 

itv' c il D- i (ca) I1 vI V/j iD vcV?i5 c \\vc vXi} 

Comparing (2.8) with (2.9), we see that the coefficient of Ioa in the K1-term 
is greater in (2.8) by a factor of at least i I = N(n)1/4; hence, in practice, 
we can compute A(F, 1) using (2.8) more accurately (given a fixed number of 
Fourier coefficients c(a)) than Q(F) using (2.9). This is the idea behind the 
second method of computing Q(F). Similar tricks were used in [8]. 
Indirect method. If A(F, 1) : 0, then we may compute Q?(F) indirectly by 
computing A(F, 1) via (2.8) and dividing by the ratio A(F, 1)/Q2(F). 

From (2.4) we have A(F, 1) = IF({O, oo}) . Let 21 be any prime not dividing 
the level n, so that the newform F is an eigenform for the Hecke operator T7 
with eigenvalue c(n1). Integrating the equation T,,F = c(7r)F from 0 to X0 
gives 

C(71)IF({O, cxm) = IT,,F({O, oo}) = IF(Tir({0, oc,})). 
Now by definition of T7, we have 

Tr({0, ??}) = X { '?}+{0?o} 
at (mod 7) 

= (N(7r) + l){0, oo}- E {o _}. 
a (mod i) 

Hence, 

(2.11) (1 + N(7) - c(7))IF({0, oo}) = S IF(f0, a/21}). 
a (mod 7r) 
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Now each cycle {O, a/ir} is in HI (Xo(n), Z) , since 7r { in. Thus, the right-hand 
side of (2.1 1) has the form n(n)Q(F) with n(7r) E 2, and we have the result 

(2.12) A(F, 1)- n() 
~~~Q(F) I + N(7r)- c(n)' 

In practice, it is easy to compute the integer n(n) using modular symbols, 
by expressing each path {O, ax/7} in terms of a basis for HI (Xo(n), 2) and 
projecting onto the F-isotypic eigenspace. For the Euclidean fields this is done 
using the continued fraction convergents of a/2r. In the non-Euclidean cases, 
a 'pseudo-Euclidean' algorithm was presented in [23]; this can be used to deter- 
mine generalized continued fraction convergents to the same effect. 

Remarks. 1. From (2.11) it follows that {0, oo} C HI (Xo (n)), Q), and from 
(2.12) that A(F, I)/Q(F) is rational for all rational newforms F. This fact 
was first proved for these forms in [13]. 

2. We may also use (2.12) as a quick way of computing many eigenvalues 
c(Z) of the newform F, once one such value and the value of A(F, 1)/Q(F) 
are known (at least if A(F, 1) :A 0), since the right-hand side of (2.12) is 
independent of the prime i. An identical method was used in [8]. If A(F, 1) = 

0, then a variation on this method can be devised, again similar to the methods 
of [8]. 

Thus, to compute the period Q(F), we first compute the integer n(7) for 
one prime 7r not dividing n, using modular symbols. If n(7r) / 0, then we 
compute A(F, 1) via (2.8) and set 

(2.13) Q(F) = A(F, 1) (1 + N(7r) - c(7r)) 
n (ir) 

In ?4 we give examples of this method, listing the values of A(F, 1) and Q(F) 
to 8 decimal places, as well as the exact rational value of A(F, 1)/Q(F) com- 
puted using (2.12). 

If, on the other hand, n(i) - 0, then A(F, 1) = 0 and this approach 
fails. We may use the direct method (2.9), though in practice the number of 
coefficients c(a) we need in order to obtain an accuracy of even three or four 
decimal places is rather large, and computing very many Hecke eigenvalues is 
time-consuming. Alternatively, we may use the trick of twisting by a quadratic 
character, as also used (over the rationals) by the first author in [8]. We now 
describe this method. 

Let I = (A) be a prime ideal of the ring of integers R not dividing 2n, and let 
X be the quadratic character modulo r. In [6] we described the twisting operator 
R. associated with x; here we denote F IRX by F 0X and summarize the 
facts which we need. If F is a newform in S(n) = S(v) and I = (A) and X 
are as above, then 

(1) FOX isanewformin S(n[2); 
(2) the Fourier coefficients of F ? X are x(a)c((a); 
(3) if F E S (n), then F ? x E ST(nF2), where z = X(e0)U; in particular, if 

F is a plusform and X(e0) = +1, then F OX is also a plusform (here, e0 is a 
fundamental unit); 

(4) if W>F =F, then WA2(F X X) = X(-v)c(F X X); 
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(5) there holds 

(2.14) A(F 8)X, 1)= jK. t F.,8, 

where 
Y(A) = E X(-a) {?0, a/AJ. 

a (mod A) 

The latter two facts are proved in an entirely analogous way to the corre- 
sponding results for cusp forms over Q. 

In (2.14), the "twisting cycle" y(A) is in the integral homology, since A is 
coprime to n; hence we may express the integral aK fy;|) F * as an integral 
multiple of the period Q(F). This integer n(X) may be computed using mod- 
ular symbols by expressing y()) in terms of a basis for the integral homology 
and projecting onto the F-isotypic eigenspace. Then we obtain the equation 

A( (F , 1) = ( 0 (F). 

We must choose A, depending on the form F as well as the level n, to have 
the properties 

(1) X(Eo) = +1 (so that F 0 x is also a plusform); 
(2) X(v)c = -1, where e is the W.-eigenvalue of F as above; 
(3) n(Q) 540 (so that A(F0X, 1) :# O). 

The second of these conditions, which is necessary for the third, ensures that the 
value L(F X X, 1) may be computed by the method described earlier (equation 
(2.8)). Taking into account the level n42 and coefficients x(a)c(aY) of F 0 X, 
we obtain the following result. 

Proposition 2.4. Let F be a newform in S+ (n) and I = (A) a prime not dividing 
2n, satisfying conditions (1 )-(3) above. Then 

(1) 

(2.15) A(F0X, 1) 8=z X(a)c() aK1 (47a) 
VI zA2 Di (a) I,D 

(2) We have 

(2.16) Q(F) - I(I A(F oy, 1)- 

We have used this method to compute Q(F) whenever A(F, 1) = 0. In ?4 
we give examples of this method, giving in each case the twisting prime A, the 
value of A(F 0 X, 1) to about eight decimal places, and the nonzero rational 
number JAIA(F 0 X, 1)/Q(F). 

There is still one situation in which this method fails: when the level n 
is a square, so that v is a square (up to a unit); then we will always have 
,y (v) = +1 and so condition (2) above will not be attainable when e = + 1. 
This only occurred once in the range of our computations, at level (16) over 
Q(V/-2). However, in this case the awkward form was already a twist of a 
second form at the same level for which A(F, 1) : 0, and the periods of the 
two forms were easily seen to be equal. Hence, we were never forced to resort 
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to the less accurate direct method of computing the period Q(F), although we 
did in fact compute the periods this way as well in many cases as a check on 
the calculations. 

Remark. We need an efficient way of approximating the sum of series of the 
form (2.8) or (2.11), where the coefficients c(a) are determined recursively 
in terms of the c(7r) for prime 7r, when we have the first several values of 
c(7z) . The method we use here is a straightforward generalization to the unique 
factorization domainr R of the recursive method used in [8], and originally in 
[1]. 

3. ELLIPTIC CURVES OVER K 

In this section we describe the elliptic curve computations which were carried 
out. In each case we first find one elliptic curve E of conductor n, defined over 
K, for each newform F for Fo(n). If we have two or more newforms at the 
same level, we must of course find one curve for each, matching curves with 
newforms by comparing L-series. The procedures used to find the curves are 
described in ?3.0. The next step (?3.1) is to find all elliptic curves isogenous to 
E over K. Then for each curve we compute (??3.2-3.4) 

* the order of the torsion subgroup, E(K)tors; 
* the periods and area Q(E); 
* the local factors cp . 
In addition, for those curves E for which the corresponding form F has 

L(F, 1) = 0, we look for points of infinite order on E(K). In fact, we also 
know the sign 6 of the functional equation of L(F, s) as in (2.6), and we 
expect this to match the parity of the rank of E. In most cases we have either 
6 - +1 and L(F, 1) 7? 0, or e - -1 and L(F, 1) 0 O, and expect the rank 
to be 0 or 1, respectively. For two forms over Q(-9) we found c + 1 and 
L(F, 1) = 0 and expect the corresponding curves to have rank 2; in these cases 
we do find two independent points of infinite order, and in one case (where 
the curve is defined over Q ) we can confirm that the curve does indeed have 
rank 2. See ?3.5 for details of this example. 

The algorithms are described below in some detail, except for Tate's algo- 
rithm, which is so well known as to need no extra comment. Some of the 
algorithms are very similar to those used by the first author in his investigations 
of modular elliptic curves over Q, while in other cases there are rnew features 
involved in working over a number field. It is hoped that the ideas we have de- 
veloped here will be useful in other investigations of elliptic curves over number 
fields. 

3.0. Finding the curves. Given a newform F for Fo(n) with rational Hecke 
eigenvalues ap, we wish to find a curve E of conductor n whose L-series 
L(E, s) is equal to L(F, s), at least up to the first several Euler factors. 

Note that every elliptic curve over K has a global minimal model, since K 
has class number 1. Such a model has the standard Weierstrass equation 

y2 +axy+a3y =x 3+a2x 2+a4x+a6 
with the coefficients ai in the ring of integers R. Let 1, a) be the standard 
2-basis for R. We may also normalize the equation so that al, a2, and a3 
are reduced modulo 2, 3, and 2, respectively: a1, a3 = U +VO with u, v E 
{0, 1}, and a2 = U + Vw0 with u, v E {-l, 0, I} . It is easy to see from the 
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standard transformation formulae for elliptic curves that the resulting equation 
for E is unique in all those fields for which R* = {+1 , -1}; over Q(X-1) we 
get two such equations, and over Q(v=-3) we get three. In the latter cases we 
choose one of the equations arbitrarily. Such equations will be called reduced. 

As a first step we ran a blanket search over all reduced equations with a4 
and a6 in some bounded region, keeping only those curves whose conductors 
(found using Tate's algorithm) were within the appropriate bound for the field 
K. This produced curves of most of the conductors desired. No other curves 
were found, except for those with complex multiplication in K, which do not 
correspond to cusp forms, as remarked in the introduction. 

For the remaining conductors a more targeted search was carried out. (This 
is the same method as the first author used in [7] to find those curves listed as 
missing in [6].) As well as knowing the conductor of the curve for which we 
are looking, we also know how many points the curve has modulo p for several 
small primes p , since this number is determined by the traces of Frobenius a. 
which are equal to the known Hecke eigenvalues for the form F. This gives 
us a restricted set of values modulo p for the coefficients of the curve. By 
using several such auxiliary primes, we can determine the possible coefficients 
of E modulo their product m = fJ P, and hence eventually the coefficients 
themselves, once m is large enough that a4 and a6 are reduced modulo m. 
The primes p are chosen so that the number of possible equations modulo p is 
as small as possible, to speed up the search; if too many primes are needed, then 
the combinatorial explosion means that the running time becomes prohibitive. 

In all but one case we were able to find a curve E corresponding to the 
newform F. This exceptional case is of some interest. 

Over K = Q( -=43) there is a newform F at level (1), in the 'minus' space 
S- (1) . This form is in fact the base-change lift of a cusp form f of weight 2 for 
ro(432) over Q with coefficients in Q(v'6) , which has 'extra twist' by Q( -=43) 
in the sense of [9]. Attached to f is a two-dimensional abelian variety A which 
is simple over Q, whose endomorphism algebra over Q(-=43) is isomorphic 
to the quaternion algebra (643). Since 6 is not a norm from Q(V-43) to 
Q , this algebra is not split, and hence A remains simple over Q(v -43). If 
x is a quadratic character of R with conductor q, then the twist F 0 X will 
be a newform at level q2 of eigenvalue -x(-1). In particular, when x is the 
quadratic character modulo q = (w), where ) = (1 + -43)/2, we obtain a 
plusform F 0 x for Fo(q2) = FO(o - 1) which has no corresponding elliptic 
curve. This newform (and its conjugate at level &i2) were found in [23]. 

In all other cases we found an elliptic curve E of conductor n whose first 50 
traces of Frobenius a. agreed with the Hecke eigenvalues of the newform F 
for F0 (n), for each of the rational newforms in the range of our investigation 
over all nine fields. 

3.1. Isogenies. Given an elliptic curve E over the field K, we now wish to 
find all curves isogenous to E over K. We may use V6lu's formulae [20] to 
find an /-isogenous curve if we have the coordinates of the points of a subgroup 
of E of order I defined over K. Finding such coordinates by algebraic means 
is troublesome, except when the subgroup is pointwise defined over K, and 
instead we resort to a floating-point method similar to the one used by the first 
author in compiling tables of elliptic curves over the rationals. 
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First we find the period lattice A = [ow1, 02] of E; see ? 3.3 below for how we 
do this. For each prime I that we wish to consider, we list the points z E C/A 
of each of the I + 1 subgroups of order 1. We then evaluate numerically the 
Weierstrass functions p(z) and p'(z) to obtain complex floating-point approx- 
imations to the x- and y-coordinates of the i-division points. Substituting into 
Velu's formulae, we obtain the coefficients of all I + 1 curves over C which are 
l-isogenous to E over C. If these coefficients are close to integers (in R ), we 
round them and check that the resulting curve over K has the right conductor 
n. It is possible that the isogenous curve might be defined over K but with non- 
integral coefficients; however, it is easy to see from the i-division equation and 
Velu's formulae that at worst we would have lia, E R for i E {1, 2, 3, 4, 6}. 
Hence, we also try rounding these scaled coefficients. 

The resulting program finds l-isogenous curves very quickly for any given 
prime 1. We ran it for all primes I < 13, applying it recursively to each new 
curve found until we had a set of curves closed under /-isogeny for these values 
of 1. In the semistable case (n square-free) this is guaranteed to be a complete 
isogeny class, since no l-isogenies can exist for primes I > 13. To see this, we 
combine Serre's result [17] that at least one of a pair of semistable l-isogenous 
curves must have a point of order I defined over K, and Kamienny's result 
[12] that an elliptic curve over an (arbitrary) quadratic field can have a point of 
prime order I only for I < 13. 

It is possible that we might have missed higher-degree isogenies in the non- 
semistable cases. 

3.2. Torsion. To determine the torsion subgroup of an elliptic curve defined 
over a number field, we may use the Lutz-Nagell Theorem. The situation is 
slightly more complicated than over Q, on account of the ramified primes: first 
we have to find a model for the curve in which all torsion points are integral. 

Proposition 3.1. Let E be an elliptic curve defined ovek a quadratic or cubic 
number field K with ring of integers R, given by an equation 

(*) y2 = X3 + ax2 + bx + c, 

where a, b, c E R. If P = (xo, yo) c E(K) has finite order, then 
(1) If a =O, or if 3 is unramified in K, then xo, yo E R; 
(2) If 3 is ramified in K, then 32XO, 33y0 E R, and even (V'113)2Xo, ( -3)3yo 

ER inthecaseK=Q (). 
Proof. We use the form of the Lutz-Nagell-type results given in Lang's book 
[14, Chapter III]. By Theorem 2.1 (op. cit.), if P has order n and is not 
integral, then n must be a prime power, say n = pm, and the denominator of 
xo divides the ideal T, jlp pr,, where 0 < rp ? ep /2, and even 0 < rp < ep /4 if 
the coefficient a of x2 is zero. Here, ep is the ramification degree of p. In a 
cubic or quadratic field this forces rp to be zero, and xo integral, in the case 
a = 0. If a :A 0 and p is unramified, the same holds. 

If a :$ 0, we can always complete the cube after scaling the equation (*) as 
follows: set Y= 33y, X= 32x+3a, B= 81b-27a2, and C=729c+54a3- 
243ab. Then (X, Y) satisfies the equation 

(**) y2 = X3 + BX + C 
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and so X(P) and Y(P) are integral as above. Thus 32xo and 33y0 are also 
integral, and P must have order a power of 3. In the case K = Q(/-3) we 
may achieve the same effect with the scaling transformation Y = (/-3)3y, 
X = (V/-3)2x -a, B=9b-3a2, and C = -27c- 2a3+ 9ab. [3 

In practice then, before searching for torsion points, we complete the square 
in a Weierstrass equation (if necessary) to obtain an equation of the form (*); 
when K = Q(/=-3) (the only one of our fields in which 3 is ramified), we carry 
out a further scaling and complete the cube as above, to obtain an equation of 
the form (**). We now have a model for our curve in which all torsion points 
are integral. 

Finally, we apply the standard trick to bound the y-coordinate of torsion 
points (see [14, Theorem 1.4]): if P is torsion, then P and 2P are both 
integral, and then either y(P) = 0 (and P has order 2) or y(p)2 divides the 
discriminant A, where A = a2b2 - 4a3c + 18abc - 4b3 - 27c2 . This gives us a 
finite number of values of y to check; for each, we attempt to solve the cubic 
for x E R, to obtain all torsion points on E. 

Note that we are actually determining all points P such that both P and 
2P are integral (in the possibly scaled model for E), which includes all torsion 
points, but may also include points of infinite order. To determine whether a 
given integral point has finite or infinite order, we simply compute multiples 
mP successively until either mPE- 0, in which case P has order m, or mP 
is not integral, in which case P has infinite order. If we find points of infinite 
order at this stage, we keep a note of them for later use (see ?3.5). 

3.3. Periods. Let E be an elliptic curve defined over the complex numbers 
C , given by a Weierstrass equation. Let AlI, A2 be a 2-basis for the period 
lattice A. We wish to compute the periods Ai, as well as the quantity 

Q(E) = IIm(AIA2)1 

We do this using Gauss' arithmetic-geometric mean. Write the equation for E 
in the form 

y2 = (x - el)(x - e2)(x - e3), 

where the roots ei are found as complex floating-point approximations (using 
Cardano's formula, say). Then the periods are given by 

Al 71A = _ _ _ _ _ _ 7(1 
agm(Ve3-eI, e3-e2) agm(/e3--e, e .2-e1) 

Notice that we are here computing the agm of pairs of complex numbers. This 
is a multivalued function: at each stage of the agm algorithm we must make a 
choice of complex square root. It appears from work of Cox [4] that while a 
different set of choices does lead to a different value for the agm, the periods we 
obtain this way will nevertheless be a 2-basis for the full period lattice A. We 
have found this to be the case in practice, where we always choose a square root 
in the right half-plane. The computation of Al and A2 by this method is very 
fast, as the agm algorithm converges extremely quickly, even in its complex 
form. As a check on the values obtained, in each case we recomputed the 
covariants C4 (= 12g2) and C6 (- 216g3) of each curve from Al and A2, using 
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the standard formulae 

C4= ( j (I + 240 E 3qn ) q C6 = ( I) (- 504Z 1 _qn ) 

where q = exp(27TiA 1 /X2) . In every case we obtained the correct values (known 
exactly from the coefficients of the minimal Weierstrass equation) to within 
computational accuracy. 

3.4. Local factors. We have implemented Tate's algorithm for elliptic curves 
over imaginary quadratic fields, in order to compute conductors and minimal 
equations. The local factors cp for all bad primes p are obtained at the same 
time. 

3.5. Points of infinite order. For each curve E we ran a search program 
looking for K-rational points of infinite order on E. Writing such a point (es- 
sentially uniquely) as (x, y) = (a/c2, b/c3) with a, b, c E R, and gcd(a, c) = 
gcd(b, c) = 1 , we search through c (modulo units) and through a coprime to 
c. Given a and c, we attempt to solve the appropriate quadratic equation for 
b E R. To speed up this procedure, for each denominator c we precompute 
for about 10 auxiliary primes p the residue classes modulo p to which a must 
belong if the equation for b is to be soluble modulo p. Each candidate value 
of a can then first be checked to see if it is admissible modulo each auxiliary 
prime before the more time-consuming step of attempting to solve for b. This 
improvement to a naive search resulted in a major time saving in some cases, 
though for most of the curves on which we expected to find points of infinite 
order, such a point was found very quickly anyway. (In some cases we had 
already found such a point during the search for torsion points.) 

For those curves E which are defined over Q, we could alternatively just 
look for Q-rational points on both E and its twist E(d), where K = Q(V). 
In these cases we computed the rank of E(K) from the elementary result 

rank(E(K)) = rank(E(Q)) + rank(E(d)(Q)), 

using our 2-descent program to compute ranks of curves over Q. We have not 
yet implemented a program to compute ranks of general curves over quadratic 
fields. 

For example, take the curve 

E: y2 +y = X3- x2- 2x + 2 

of conductor (3-/19) over K = Q(/-19), which is defined over Q. The 
conductor of E over Q is (57), and rank(E(Q)) = 1 with generator (2, 1). 
The (-19)-twist is 

E(-19): y2 + y = X3 + x2- 842x-10633, 

which has conductor (1083) = (3)(19)2, and rank 1 also. Hence, rank(E(K)) 
2, and we have independent points (2, 1) and (1 + 4w), 15 - 12w)) on E(K). 
Furthermore, the corresponding form F at level (3/ -1) over K has the 
properties that L(F, 1) = 0, and the sign of the functional equation of L(F, s) 
is +1 , so that the order of L(F, s) at s = 1 is even and at least 2. 
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4. EXAMPLES AND RESULTS 

In this final section, we illustrate the methods described above with a series 
of examples, showing the various different situations which can arise for the 
nine fields under consideration. Complete tables giving all the results of our 
computations formed part of [23], but are not included here for reasons of 
space; they may be obtained from the first author via electronic mail. 

We do not give here the Hecke eigenvalues of the newforms; these (for the 
first 15 primes in each field) can be found in [6] for the Euclidean fields, and in 
[23] for the non-Euclidean fields. In the following examples we have attempted 
to obtain eight decimal places accuracy, computing up to 500 Hecke eigenvalues; 
however in some cases (particularly over the fields Q( --43) and Q( -=67)) 
we had to be content with less accuracy. 

First we give a table showing, for each field K = Q(d), the range of levels 
n covered and the number of rational newforms F found. The bounds on the 
norm N(n) are taken from [6 and 23]. Here we only count one of each pair of 
conjugate levels n, -n. 

d 1 2 3 7 1 1 19 43 67 163 

Bound on N(n) 500 300 500 300 200 500 230 265 100 

Number of forms F 39 36 27 17 17 55 7 6 0 

Note that no rational newforms were found over Q( -163) at the levels 
considered. It has not yet been possible, for practical implementation reasons, to 
run the program on higher levels such as (11) or ( -163) over this field, where 
we would have expected to find rational newforms lifted from Q, corresponding 
to elliptic curves defined over Q of conductors 11 and 163, respectively. 

Example 1. Field: K = Q(-/2). Level: n = (13 + 80) = (1 _ 0)2(3 + 0), 
where 0 = v-2. There are two rational newforms in S+(13 + 80), which is 
two-dimensional. 

(a) For the first newform we compute A(F, 1)/Q(F) = 1/3, using (2.12), 
and A(F, 1) 0.58775231 to eight decimal places, using (2.8) with 50 primes; 
hence, Q(F) 1.76325694. We found an isogeny class of three curves of 
conductor (13 + 80) corresponding to F (in the sense that the first 50 ap for 
the curves agree with those of F ): 

a, a2 a3 a4 a6 ITI Cp fIcp/IT12 
A 0 - 1 + 0 1 1 - 0 0 3 1,1 1/9 5.28977075 
B 0 - 1 + 0 1 11 - 110 -27+ 30 3 3,1 1/3 1.76325692 
C 0 -1+0 1 -9+390 -210-390 1 1,1 1 0.58775231 

Here, T = E(K)tors. The curves are linked by 3-isogenies: 

A 4-3 B 3 C. 

In each case we have 

Q* n c1/I T12 0.58775231 A(F, 1) 
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to eight decimal places; moreover, for curve B we also have exact equality 
of the ratios Hcp/lIT2 - A(F, 1)/Q(F) = 1/3 and Q*(B) Q(F) to eight 
decimal places. Thus, we may say that curve B is the 'strong' curve in the class. 

(b) For the second newform at this level, A(F, 1)/IQ(F) = 1 with A(F, 1) = 
Q(F) 2.82769670 (again using 50 primes). The isogeny class consists of a 
single curve: 

a, a2 a3 a4 a6 ITI Cp Hcp/lTTl Q* 

D 0 1 - 0 1 2 - 20 1 1 1 ,1 1 2.82769659 

giving agreement as before. 

Example 2. Field: K = Q(V-1). Level: n = (13 + 8i) (a prime), where 
i = v-1. The unique rational newform F in S+ (13 + 8 i), which is one- 
dimensional, has A(F, 1) = 0, with the sign of the functional equation being 
-1. Using the twisting prime A = 3, we have A(F 0 X, 1)L2.I/Q(F) = 2, and 
compute A(F X X, 1) 5.87129440, using (2.15) with 300 primes. Hence, 
Q(F) 8.80694160. The unique curve we found of conductor (13 + 8i) is as 
follows: 

a, a2 a3 a4 a6 ITI Cp F|cp/lT12 

A 0 1-i i -i 0 1 1 1 8.80694161 

Again, we observe that Q* (D) Q(F) to eight decimal places. In this case 
we expect the curve to have rank 1, and the rank is certainly positive since the 
point (0, 0) has infinite order. 

Example 3. Field: K = Q(/-19). Level: n = (2co) = (2)(w), where co = 

(1 + v-19)/2. The unique rational newform F in S+(2wo), which is 1- 
dimensional, has A(F, 1)/Q(F) = 2/3, and we compute A(F, 1) 0.95601768 
(using 50 primes), so that Q2(F) 1.43402652. We found an isogeny class of 
three curves of conductor (2co) which correspond to F: 

a, a2 a3 a4 a6 ITI Cp FI cp/ITQ2 
A w 1 -w 1 -1 0 3 1,2 2/9 4.30207956 
B w 1 - w 1 9 - 5w -24 - 2w 3 3,2 2/3 1.43402652 
C w 1 -wo 1 -31 - 15w -60- 54w 1 1,2 2 0.47800884 

The curves are linked by 3-isogenies: 

A 3 B 3 C. 

For each curve we have Q* (E) F cp /l T12 0.95601768, in agreement with 
A(F, 1); curve B is 'strong' with flcp/lT12 = A(F, 1)/Q?(F) = 2/3, and 
Q2*(B) :c Q(F) to eight decimal places. 

Example 4. Field: K = Q(/-3). Level: n = (19) = (3 + 2p)(2 + 3p), 
where p = (1 + /-3)/2. The unique rational newform F in S+(19), which 
is 1-dimensional, has A(F, 1) = 0; the sign of the functional equation is - 1. 
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Using A = 3 + p, we compute A(F X X, l)IAI/Q(F) = 2, and A(F XX, 1) 
5.39169497 (using 300 primes), so that Q(F) 9.72001634. We found an 
isogeny class of five curves of conductor (19) which correspond to F, linked 
by three-isogenies: 

A 
I 3 

D 3 B 3 E 
I 3 
c 

I a, a2 a3 a4 a6 ITI Cp Jcp/1TI II T..... 

A 0 -p 1 - 1 +p 0 3 1,1 1/9 9.72001634 
B 0 -p 1 9 - 9p -15 9 3,3 1/9 3.24000545 
C 0 -p 1 769 -769p -8470 3 1, 1 1/9 1.08000182 
D 0 -p 1 -31 - 99p 74 - 498p 3 1,9 1 1.08000182 
? 0 -p 1 99 + 31p -424+ 498p 3 9,1 1 1.08000182 

Here we can only compare periods, and note that Q?* (A) Q2(F) to eight 
decimal places, so that A is the 'strong' curve. The point (1, 0) has infinite 
order on curve A, which we expect to have rank 1. 

Example 5. Field: K = Q(/-1) . Level: n = (6+ 6i) =1 + i)3(3) . The unique 
rational newform F in S+(6+6i), which is 1-dimensional, has A(F, 1)/Q(F)= 
1/8; the sign of the functional equation is +1. We compute A(F, 1) 
0.45441838, so that Q(F) 3.63534702. We found an isogeny class of six 
curves of conductor (6 + 6i) which correspond to F, linked by two-isogenies: 

2 2 2 A -*B *-E 

I2 I2 
D F 

al a2 a3 a4 a6 ITI cp H cp/IT12 , 

A 0 1 0 1 0 8 4,1 1/16 7.27069404 
B 1 i -i 1 + i 1 - i -i 8 2,2 1/16 7.27069404 
C 1 + i -i 1 + i 6 - i 4i 8 2,4 1/8 3.63534702 
D 1 + i -i 1 + i 16 - i -28i 4 2,1 1/8 3.63534702 
E 1 + i -i 1 + i -4 - i 22i 8 2,8 1/4 1.81767351 
F 1 + i -i 1 + i 96 - i 346i 4 2,2 1/4 1.81767351 

For all curves we have Q* Hcp/1T12 0.45441838 A(F, 1) to eight decimal 
places; however, there are now two curves in the class, C and D, which might 
be considered as 'strong', with Q*(C) = Q*(D) Q (F) and Hcp/IT12 - 

A(F, 1)/Q(F) = 1/8. 

Example 6. Field: K = Q(/-19). Level: n = (3 - 6w)) = (3)(--19), 
where c) = (1 + -/9)/2. The space S+(2w) is 5-dimensional, with a two- 
dimensional space of oldforms from level ( -1) and three newforms. One 
of these shows a new phenomenon which can occur. We have A(F, 1)/Q(F) = 
16/5, and we compute (using 200 primes) A(F, 1) 1.99511543, so that 
Q(F) 0.62347357. We found an isogeny class of two 5-isogenous curves of 
conductor (3 - 6w() which correspond to F (these curves are defined over Q 
with conductor (57) over Q): 
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a, a2 a3 a4 a6 ITI Cp H cp/1T12 
A 0 1 1 20 -32 5 10, 2 4/5 0.62347357 
B 0 1 1 -4390 -113432 1 2, 2 4 0.12469471 

For each curve we have Q* I c_ /IT12 0.49877886, which is 1/4 the value 
of A(F, 1); also no curve has Hcp/ITI2 = 16/5 = A(F, 1)/Q2(F), though 
Q*(A) Q(F). Hence, if we were to postulate that both curves had a non- 
trivial Tate-Shafarevich group III of order 4, then the Birch-Swinnerton-Dyer 
conjecture would predict that 

L(A, 1) = Q*(A)JlE1l J7 cp/IT12 4 * 0.49877886 1.99511542 A(F, 1), 

and we would also have (for curve A) 

IIII lJ1 cp/I T12 = 16/5 = A(F, 1)/Q(F), 

as well as Q*(A) Q(F), so that A would be the 'strong' curve. It would be 
interesting to carry out a 2-descent on these curves to support this hypothetical 
value of ifi1. 

It is also interesting to notice that of the other two newforms at this level, one 
has the properties that A(F, 1) = 0 with the sign of the functional equation 
being + 1 , and the corresponding curve has rank 2 (see ?3.5). This phenomenon, 
where a curve of rank 2 appears at the same level as one with nontrivial if, 
occurred twice in the first author's computations over the rationals in [8], with 
conductors 571 and 681. 

Example 7. Field: K =Q(/-43). Level: n = (13 + c) (a prime), where w)= 
(1 + -43)/2. The unique rational newform F in S+(13 + c()), which is one- 
dimensional, has A(F, 1) = 0, with the sign of the functional equation being 
-1 . Using the twisting prime A = 2 - w), we have A(F 0 x1 I)J)AL/Q(F) = 2, 
and compute A(F XX, 1) 1.22122769, using (2.15) with 400 primes. Hence, 
Q2(F) 2.20159953. The unique curve we found of conductor (13 + c()) is as 
follows: 

a, a2 a3 a4 a6 ITI cp H cp /I T12 

A 0 -co 1 +co -2 1-co 1 1 1 2.20155358 

Again, we observe that Q* (A) and Q(F) are approximately equal. In this case 
we expect the curve to have rank 1, and the rank is certainly positive since the 
point (-1, -2) has infinite order. 

Example 8. Field: K = Q(/-67). Level: n = (3)) = (3)(o)), where o = 
(1 + -67)/2. The unique rational newform F in S+(3wo), which is 7- 
dimensional, has A(F, 1) = 0, with the sign of the functional equation being 
- 1 . Using the twisting prime A 1 - 1 , we have A(F 0X , 1) IAI/Q(F) =8 , 
and compute A(F X X, 1) 1.03780493 , using (2.15) with 400 primes. Hence, 
Q(F) 0.53487242. The unique curve we found of conductor (3wo) is as fol- 
lows: 

a, a2 a3 a4 a6 ITI cp Hcp/1T12 
A w 1w + wo c -1-3wo 16-5wo 1 5, 4 20 0.53058984 
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Again, we observe that Q* (A) and Q(F) are approximately equal. In this case 
we expect the curve to have rank 1, and the rank is certainly positive since the 
point (-w, -4) has infinite order. 

Final remarks. As seen in Example 5, we did not always find a unique 'strong' 
curve in each isogeny class. Also, we may look at a class of curves defined over 
Q, such as those of conductor (1 1) over Q, and see how they behave in the 
various quadratic fields. We find that over all nine fields the class still contains 
just the three curves (linked by 5-isogenies) with Antwerp codes 1 A, 1 B, 1 C. 
Of these, the 'strong Weil curve' over Q is 1 B. Over the eight quadratic fields 
Q( /-d), excluding Q( -163), we find that for d = 1, 3, 11, and 67 the 
rank is 0 and 1 B is the strong curve, while for d = 2, 7, 19, and 43 the rank 
is 1 and 1 A is the strong curve. We have no explanation for this 'coincidence'. 
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